Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.197
Filter
1.
Sci Rep ; 14(1): 7752, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565858

ABSTRACT

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Subject(s)
Composting , Greenhouse Gases , Soil , Agriculture/methods , Triticum , Carbon , Charcoal , Sodium Chloride , Sodium Chloride, Dietary , Nitrous Oxide/analysis , Carbon Dioxide/analysis
2.
Int J Behav Nutr Phys Act ; 21(1): 36, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566176

ABSTRACT

BACKGROUND: The Planetary Health Diet Index (PHDI) measures adherence to the dietary pattern presented by the EAT-Lancet Commission, which aligns health and sustainability targets. There is a need to understand how PHDI scores correlate with dietary greenhouse gas emissions (GHGE) and how this differs from the carbon footprints of scores on established dietary recommendations. The objectives of this study were to compare how the PHDI, Healthy Eating Index-2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to (a) dietary GHGE and (b) to examine the influence of PHDI food components on dietary GHGE. METHODS: We used life cycle assessment data from the Database of Food Recall Impacts on the Environment for Nutrition and Dietary Studies to calculate the mean dietary GHGE of 8,128 adult participants in the 2015-2016 and 2017-2018 cycles of the National Health and Nutrition Examination Survey (NHANES). Poisson regression was used to estimate the association of (a) quintiles of diet score and (b) standardized dietary index Z-scores with dietary GHGE for PHDI, HEI-2015, and DASH scores. In secondary analyses, we used Poisson regression to assess the influence of individual PHDI component scores on dietary GHGE. RESULTS: We found that higher dietary quality on all three indices was correlated with lower dietary GHGE. The magnitude of the dietary quality-dietary GHGE relationship was larger for PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO2 equivalents per one standard deviation change] and for DASH [-0.5, (-0.4, -0.6) kg CO2-equivalents] than for HEI-2015 [-0.2, (-0.2, -0.3) kg CO2-equivalents]. When examining PHDI component scores, we found that diet-related GHGE were driven largely by red and processed meat intake. CONCLUSIONS: Improved dietary quality has the potential to lower the emissions impacts of US diets. Future efforts to promote healthy, sustainable diets could apply the recommendations of the established DASH guidelines as well as the new guidance provided by the PHDI to increase their environmental benefits.


Subject(s)
Dietary Approaches To Stop Hypertension , Greenhouse Gases , Adult , Humans , Diet, Healthy , Greenhouse Gases/analysis , Nutrition Surveys , Carbon Dioxide/analysis , Diet
3.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569319

ABSTRACT

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Subject(s)
Fabaceae , Greenhouse Gases , Vegetables/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Nitrates , Carbon , Soil , Methane/analysis , Nitrogen/metabolism , Carbon Dioxide/analysis , Agriculture
4.
PLoS One ; 19(4): e0291840, 2024.
Article in English | MEDLINE | ID: mdl-38568915

ABSTRACT

BACKGROUND: This study examined the correlation of classroom ventilation (air exchanges per hour (ACH)) and exposure to CO2 ≥1,000 ppm with the incidence of SARS-CoV-2 over a 20-month period in a specialized school for students with intellectual and developmental disabilities (IDD). These students were at a higher risk of respiratory infection from SARS-CoV-2 due to challenges in tolerating mitigation measures (e.g. masking). One in-school measure proposed to help mitigate the risk of SARS-CoV-2 infection in schools is increased ventilation. METHODS: We established a community-engaged research partnership between the University of Rochester and the Mary Cariola Center school for students with IDD. Ambient CO2 levels were measured in 100 school rooms, and air changes per hour (ACH) were calculated. The number of SARS-CoV-2 cases for each room was collected over 20 months. RESULTS: 97% of rooms had an estimated ACH ≤4.0, with 7% having CO2 levels ≥2,000 ppm for up to 3 hours per school day. A statistically significant correlation was found between the time that a room had CO2 levels ≥1,000 ppm and SARS-CoV-2 PCR tests normalized to room occupancy, accounting for 43% of the variance. No statistically significant correlation was found for room ACH and per-room SARS-CoV-2 cases. Rooms with ventilation systems using MERV-13 filters had lower SARS-CoV-2-positive PCR counts. These findings led to ongoing efforts to upgrade the ventilation systems in this community-engaged research project. CONCLUSIONS: There was a statistically significant correlation between the total time of room CO2 concentrations ≥1,000 and SARS-CoV-2 cases in an IDD school. Merv-13 filters appear to decrease the incidence of SARS-CoV-2 infection. This research partnership identified areas for improving in-school ventilation.


Subject(s)
COVID-19 , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Carbon Dioxide/analysis , Developmental Disabilities/epidemiology , Schools , Students , Ventilation
5.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38569297

ABSTRACT

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Subject(s)
Disinfectants , Sodium Hypochlorite , Disinfectants/analysis , Hypochlorous Acid , Chromatography, Gas/methods , Carbon Dioxide/analysis
6.
J Environ Manage ; 357: 120736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574706

ABSTRACT

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
7.
J Environ Manage ; 357: 120755, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581890

ABSTRACT

Despite the prevalence of discussions on the "resource curse", the impact of natural resources on environmental quality for better or for worse has not been clearly answered, this study aims to answer the question by introducing the role of Information and Communication Technologies (ICT). To that end, by using the Instrumental Variable Generalized Method of Moments (IV GMM) estimator and a sample of 102 developing and emerging economies from 2006 to 2016, this paper studies the impact of ICT on the relationship between natural resources and environmental quality. Specially, the Environmental Performance Index (EPI) captures the environmental quality. The results show that natural resources have a significant negative effect on EPI, specially, EPI decreases by one unit with a 1% increase in natural resource rents. ICT significantly mitigates this adverse effect, and marginal effects analysis further confirms its positive moderate effects. The results proved to be robust by Lewbel 2SLS and Driscoll-Kraay techniques or other robust tests. It is noteworthy that the adverse effect of natural resources on EPI is greater and the mitigating effect of ICT is more pronounced in low-income countries and lower-middle income countries. Overall, these results remind resource-based countries to vigorously develop ICT, and apply intelligent exploration, digital monitoring, or other digital technologies to realize the high-efficiency use of natural resources, reducing environmental pollution and ecological damage.


Subject(s)
Communication , Economic Development , Natural Resources , Environmental Pollution/analysis , Cost-Benefit Analysis , Carbon Dioxide/analysis
8.
PLoS One ; 19(4): e0300603, 2024.
Article in English | MEDLINE | ID: mdl-38564579

ABSTRACT

The expansion of the Belt and Road Initiative (BRI) has raised a wide range of concerns about its environmental impact. Therefore, from the perspective of environmental impacts, this study used the two-way fixed effect staggered differences in differences (TWFE Staggered DID) method to examine the impact of the BRI on the Environment Goods (EGs) intra-industry trade (IIT) between China and other Belt and Road (B&R) countries, including a sample of 191 countries, covering the period from 2010 to 2019 for eliminating the impact of COVID-19 and the financial crisis in 2008 and 2009. Because only 135 countries signed a Memorandum of Understanding between 2010 and 2019, this study treated these B&R countries as the study group, and the other 73 countries (non-B&R countries) as the control group. This study described EGs using the 54 6-digit code Environment Goods in Harmonized Commodity Description and Coding System listed in the "APEC LIST OF ENVIRONMENT GOODS" published by the Asia-Pacific Economic Cooperation in 2012, and used the intra-industry trade index proposed by Grubel and Lloyd in 1971 to measuring dependent variable. The research results indicated that the BRI has significantly promoted bilateral EGs IIT. The mechanism test implied that, in addition to direct impacts, the BRI also has indirect impacts by boosting the energy restructuring of B&R countries. These results prove that the BRI has positive impacts on the environment. The heterogeneity test showed that there is a heterogeneous impact depending on the type of IIT, product categorization, B&R countries' income levels, and geographic environment. This study not only gives theoretical and empirical evidence of the positive environmental impacts of the BRI, but also provides practical guidance for the development of EGS IIT between China and B&R countries, thereby contributing to global carbon emissions reduction and environmental governance to some degree.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Asia , China , Industry , Economic Development , Carbon Dioxide/analysis
9.
PLoS One ; 19(4): e0297529, 2024.
Article in English | MEDLINE | ID: mdl-38578792

ABSTRACT

Currently, the world faces an existential threat of climate change, and every government across the globe is trying to come up with strategies to tackle the severity of climate change in every way possible. To this end, the use of clean energy rather than fossil fuel energy sources is critical, as it can reduce greenhouse gas emissions and pave the way for carbon neutrality. This study examines the impact of the energy cleanability gap on four different climate vulnerabilities, such as ecosystem, food, health, and housing vulnerabilities, considering 47 European and non-European high-income countries. The study considers samples from 2002 to 2019. This study precedes the empirical analysis in the context of a quadratic relationship between the energy cleanability gap and climate vulnerability. The study uses system-generalized methods of the moment as the main technique, while panel quantile regression is a robustness analysis. Fixed effect and random effect models have also been incorporated. The study finds that the energy cleanability gap and all four climate vulnerabilities demonstrate a U-shaped relationship in both European and non-European countries, implying that when the energy cleanability gap increases, climate vulnerability decreases, but after reaching a certain threshold, it starts to increase. Development expenditure is found to be negatively affecting food and health vulnerabilities in European nations, while it increases food vulnerability and decreases health vulnerability in non-European nations. Regarding industrialization's impact on climate vulnerabilities, the study finds opposite effects for the European and non-European economies. On the other hand, for both groups, trade openness decreases climate vulnerabilities. Based on these results, the study recommends speeding up the energy transition process from fossil fuel energy resources towards clean energy resources to obtain carbon neutrality in both European and non-European groups.


Subject(s)
Ecosystem , Greenhouse Gases , Developed Countries , Greenhouse Gases/analysis , Economic Development , Fossil Fuels/analysis , Carbon/analysis , Carbon Dioxide/analysis , Renewable Energy
10.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600111

ABSTRACT

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , Iron , Methane/metabolism , Minerals
11.
Environ Sci Technol ; 58(15): 6586-6594, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38572839

ABSTRACT

Cities represent a significant and growing portion of global carbon dioxide (CO2) emissions. Quantifying urban emissions and trends over time is needed to evaluate the efficacy of policy targeting emission reductions as well as to understand more fundamental questions about the urban biosphere. A number of approaches have been proposed to measure, report, and verify (MRV) changes in urban CO2 emissions. Here we show that a modest capital cost, spatially dense network of sensors, the Berkeley Environmental Air Quality and CO2 Network (BEACO2N), in combination with Bayesian inversions, result in a synthesis of measured CO2 concentrations and meteorology to yield an improved estimate of CO2 emissions and provide a cost-effective and accurate assessment of CO2 emissions trends over time. We describe nearly 5 years of continuous CO2 observations (2018-2022) in a midsized urban region (the San Francisco Bay Area). These observed concentrations constrain a Bayesian inversion that indicates the interannual trend in urban CO2 emissions in the region has been a modest decrease at a rate of 1.8 ± 0.3%/year. We interpret this decrease as primarily due to passenger vehicle electrification, reducing on-road emissions at a rate of 2.6 ± 0.7%/year.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Carbon Dioxide/analysis , Bayes Theorem , Air Pollution/analysis , Cities , Vehicle Emissions/analysis
12.
Sci Total Environ ; 927: 172272, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583626

ABSTRACT

To combat with climate change, most countries have set carbon neutrality target. However, our understanding on carbon removal, release and sequestration by mariculture remains unclear. Here, carbon removal, release and sequestration by maricultured seaweeds, shellfish and fish in Shandong Province during 2003-2022 were assessed using a comprehensive method that considers the processes of biological metabolism, seawater chemistry and carbon footprint. Saccharina japonica productivity has been largely enhanced since 2014, resulting in increased production and CO2 removal and sequestration. Seaweeds removed 172 Gg C and sequestered 62 Gg C in 2022. CO2 removal and release by shellfish demonstrated a slow increase trend, ranging from 231 to 374 Gg C yr-1 and 897 to 1438 Gg C yr-1 during 2003-2022, respectively. Contrary to seaweed and shellfish, maricultured fish added CO2 to seawater due to the use of feeds. The added CO2 by fish culture achieved the peak of 60 Gg C in 2011 and decreased to 25 Gg C in 2022. Most of this added CO2 was released to atmosphere by microbial mineralization and it was in the range of 21-52 Gg C yr-1 during 2003-2022. After summing up the contribution of seaweeds, shellfish and fish, both total CO2 removal (from 110 to 259 Gg C yr-1) and total CO2 release (from 929 to 1429 Gg C yr-1) increased remarkably during the past 20 years. To neutralize CO2 release by shellfish and fish, Pyropia yezoensis needs the largest culture area (1.65 ± 0.15 × 106 ha) while Gracilariopsis lemaneiformis requires the smallest area (0.11 ± 0.03 × 106 ha). In addition, there are enough available areas for culturing G. lemaneiformis, Ulva prolifera and Sargassum fusifarme to neutralize total CO2 emission in Shandong Province. This study elucidates carbon removal, release and sequestration capacities of mariculture and indicates that seaweed culture has a tremendous potential to achieve carbon neutrality target in Shandong.


Subject(s)
Aquaculture , Carbon Sequestration , China , Seaweed/metabolism , Carbon Dioxide/analysis , Climate Change , Seawater/chemistry , Animals , Carbon/metabolism , Carbon/analysis , Shellfish , Fishes/metabolism , Environmental Monitoring
13.
Sci Total Environ ; 927: 172286, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588739

ABSTRACT

Roadside greenery is an efficient strategy for maximizing ecosystem services, including carbon sequestration in urban settings. However, the quantification of carbon sequestration is not comprehensive because understory shrubs and soil respiration have not been thoroughly considered. We developed an integrated methodology that combined field measurements and greenhouse incubation to comprehensively assess carbon sequestration in roadside greenery systems. The system was defined as an 8 m long section comprising a single tree (Zelkova serrata), 79 shrubs (Euonymus japonicus), and soil. Annual carbon uptake by a tree was estimated using an allometric equation derived from an official government report. For shrubs, carbon uptake was measured in the field by monitoring CO2 concentration change in the chamber enclosing the leaves and stems. Annual carbon uptake by shrubs was estimated by using the regression equation among carbon uptake, air temperature, and photosynthetically active radiation. We also estimated shrub root respiration by combining net primary production (NPP) from the greenhouse incubation and measured pruning effect in the field. This enabled us to differentiate heterotrophic respiration from the total soil respiration. The overall methodology accurately assessed net ecosystem production (NEP) from the roadside greenery system, which is 0.528 kg C m-2 yr-1. If this figure is extended to all roads in the target city, it can offset daily carbon emitted from the total registered passenger vehicles in the target city. Considering that shrubs sequester an amount equivalent to 29.3 % of the carbon sequestered by tree species, the current greenhouse gas inventory should include shrubs as an important carbon sink. As we also revealed that roadside soil has high carbon vulnerability, proper soil management is needed to enhance NEP. Our systematic approach evaluating the carbon balance within the roadside greenery system can be applied to other cities, contributing to enhance global understanding of urban carbon cycle.


Subject(s)
Carbon Sequestration , Soil , Soil/chemistry , Environmental Monitoring/methods , Ecosystem , Cities , Carbon/metabolism , Carbon/analysis , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Trees
14.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 203-207, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605622

ABSTRACT

The concentration of end-tidal carbon dioxide is one of the important indicators for evaluating whether the human respiratory system is normal. Accurately detecting of end-tidal carbon dioxide is of great significance in clinical practice. With the continuous promotion of the localization of end-tidal carbon dioxide monitoring technology, its application in clinical practice in China has become increasingly widespread in recent years. The study is based on the non-dispersive infrared method and comprehensively elaborates on the detection principle, gas sampling methods, key technologies, and technological progress of end-tidal carbon dioxide detection technology. It comprehensively introduces the current development status of this technology and provides reference for application promotion and further improvement.


Subject(s)
Carbon Dioxide , Humans , Carbon Dioxide/analysis , Monitoring, Physiologic , China
15.
PLoS One ; 19(4): e0296787, 2024.
Article in English | MEDLINE | ID: mdl-38635585

ABSTRACT

In the context of green and sustainable development and rural revitalization, analysis of the relationship between economic development and the evolution of carbon metabolism is of great significance for China's future transformation of development models. This study analyzed the spatial characteristics and spatiotemporal evolution pattern of the decoupling status between carbon metabolism and economic development of Laiwu during two periods from 2001 to 2018 at the village and town unit scales by using the Tapio decoupling model. The results showed that the growth rate of carbon metabolism from 2001 to 2009 was significantly higher than that from 2009 to 2018. The spatial heterogeneity of the decoupling states between economic development and carbon metabolism from 2009 to 2018 was significantly stronger than that from 2001 to 2009 in two units. From 2001 to 2018, the development trend gradually trended towards spatial imbalance. The decoupling status between villages and towns had a high degree of consistency from 2001 to 2009 and inconsistency from 2009 to 2018. From 2001 to 2009, the decoupling status of about 78% of villages was consistent with that of towns. Moreover, from 2009 to 2018, the consistency reduced to 32.2%, and the decoupling status of about 48% of villages was weaker than that of towns. According to the reclassification results of different decoupling state change types, from 2001 to 2018, about 52.2% of the villages had a decoupling state evolution type of eco-deteriorated economic development, which is an unsatisfactory development trend in a short time. Moreover, about 12.1% of the villages had a decoupling state evolution type of eco-improved economic development, which is a satisfactory development trend.


Subject(s)
Carbon , Economic Development , Humans , Cities , Carbon/analysis , Rural Population , China , Carbon Dioxide/analysis
16.
PLoS One ; 19(4): e0292260, 2024.
Article in English | MEDLINE | ID: mdl-38635691

ABSTRACT

Pollution in the environment is today the biggest issue facing the globe and the main factor in the development of many fatal diseases. The main objective of the study to investigate green investments, economic growth and financial development on environmental pollution in the G-7 countries. This study used annual penal data from 1997 to 2021. The panel NARDL (Non-linear autoregressive distributed lag) results affirm that the positive change of green investment and negative shock in green investment have a significant and positive association with environment pollution in G-7 nations. Our findings provide more evidence for the long-term asymmetry between financial development and environmental performance. However, the findings confirm that a positive modification in financial development has a positive and significant effect on environment pollution. Whereas negative shock in financial development is negative and insignificant relationship with environment pollution. Moreover, the outcomes of the study reveal that both positive shock in gross domestic product growth and negative shock of economic growth have a significant and positive link with environment pollution in G-7 countries. According to the findings, by lowering carbon dioxide emissions, green investments reduced environmental pollution in the G-7 nations over the long and short term. Moreover, it is an innovative research effort that provides light on the connection between green investments, financial development, and the environment while making mention to the EKC in G-7 countries. After all these, our recommendation is to increases green investment expenditures to reduce environmental pollution in the G-7 nations based on our findings. Additionally, one important way for the nation to achieve its sustainable development goals is to improve advancements in the financial sector.


Subject(s)
Environmental Pollution , Sustainable Development , Environmental Pollution/analysis , Investments , Carbon Dioxide/analysis , Economic Development
17.
Methods Mol Biol ; 2790: 63-76, 2024.
Article in English | MEDLINE | ID: mdl-38649566

ABSTRACT

Stomata can be distributed exclusively on the abaxial or adaxial leaf surface, but they are most commonly found on both leaf surfaces. Variations in stomatal arrangement, patterning, and the impact on photosynthesis can be measured using an infrared gas exchange system. However, when using standard gas exchange techniques, both surfaces are measured together and averaged to provide leaf-level values. Employing an innovative gas exchange apparatus with two infrared gas analyzers, separate gaseous flux from both leaf surfaces can be quantified simultaneously and independently. Here, we provide examples of typical measurements that can be performed using a "split chamber" gas exchange system.


Subject(s)
Photosynthesis , Plant Stomata , Plant Stomata/metabolism , Plant Stomata/physiology , Gases/chemistry , Plant Leaves/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/chemistry
18.
Methods Mol Biol ; 2790: 95-120, 2024.
Article in English | MEDLINE | ID: mdl-38649568

ABSTRACT

The recent development of an infrared gas analyzer capable of making carbon dioxide flux measurements from aquatic samples has enabled a new sphere of photosynthesis research. This study details key photosynthesis measurements on four aquatic and hydrophytic species, diverse in their morphology, physiology, and habitat. This guide specifies the methods and procedures needed to make reliable and accurate gas exchange measurements, with examples of data correction and presentation.


Subject(s)
Carbon Dioxide , Carbon , Photosynthesis , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Carbon/metabolism , Aquatic Organisms/metabolism , Ecosystem
19.
Methods Mol Biol ; 2790: 1-26, 2024.
Article in English | MEDLINE | ID: mdl-38649563

ABSTRACT

Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.


Subject(s)
Photosynthesis , Plant Leaves/metabolism , Plant Leaves/physiology , Plants/metabolism , Chlorophyll/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...